Tutorial 6 MATH3020: Real Analysis Extra - Cauchy Sequences Extra - Cluster Points Extra - Limits Infimum/Supremum

Benjamin Fedoruk

Ontario Tech University

October 22, 2024

3

イロト 不得 トイヨト イヨト

A sequence $(x_n) \in \mathbb{R}^{\mathbb{N}}$ is called *Cauchy* in \mathbb{R} if and only if for every $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that $n, m \ge N$ implies $|x_n - x_m| - \varepsilon$. Prove that $(x_n) \in \mathbb{R}^{\mathbb{N}}$ is Cauchy if and only if (x_n) converges to some point $a \in \mathbb{R}$.

イロト 不得下 イヨト イヨト 二日

(Wade 2.4.7/61)

- Let E be a subset of R. A point a ∈ R is called a *cluster point* of E if E ∩ (a − r, a + r) contains infinitely many points for every r > 0. Prove that a is a cluster point of E if and only if for each r > 0, E ∩ (a − r, a + r) \ {a} is nonempty.
- ${\ensuremath{\textcircled{}}}$ Prove that every bounded infinite subset of ${\ensuremath{\mathbb{R}}}$ has at least one cluster point.

Question 3 - Limits Infimum/Supremum and Reflection

The *limit supremum* of a real sequence (x_n) is the extended real number lim $\sup_{n\to\infty} x_n := \lim_{n\to\infty} (\sup_{k\ge n} x_k)$ and the *limit infimum* of (x_n) is the extended real number $\liminf_{n\to\infty} x_n := \lim_{n\to\infty} (\inf_k k \ge nx_k)$ Suppose that (x_n) is a real sequence. Prove that

$$-\limsup_{x\to\infty} x_n = \liminf_{x\to\infty} (-x_n)$$

and

$$-\liminf_{x\to\infty} x_n = \limsup_{x\to\infty} (-x_n)$$