
7. Limit Theorems, Monotone and Bolzano-Weierstrass
We shall continue our discussion of convergence and sequences.
Here are some useful theorems regarding sequences:

Theorem 1 (Squeeze Theorem for Sequences)

Let (xn), (yn), (wn) ∈ RN.

(a) If xn → a and yn → a as n → ∞ and if there exists an N0 ∈ N such that xn < wn < yn for n ≥ N0 then wn → a as n → ∞.

(b) If xn → 0 as n → ∞ and (yn) is bounded then xnyn → 0 as n → ∞.

Theorem 2 (Comparison Theorem for Sequences)

Let (xn), (yn) ∈ RN be convergent. Suppose xn → a and yn → b as n → ∞. If there exists some N0 ∈ N such that xn ≤ yn for
n ≥ N0, then a < b. In particular, if xn ∈ [i, j] then a ∈ [i, j].

Here are some useful and intuitive definitions.

Definition 1 (Increasing/Decreasing)

(a) We say (xn) is increasing if x1 ≤ x2 ≤ ....

(b) We say (xn) is decreasing if x1 ≥ x2 ≥ ....

(c) We say (xn) is strictly increasing if x1 < x2 < ....

(d) We say (xn) is strictly decreasing if x1 > x2 > ....

Notationally, if (xn) is an increasing sequence which converges to a, we typically write xn ↑ a as n → ∞. Similarly, if (xn) is a decreasing
sequence which converges to a, we typically write xn ↓ a as n → ∞.

Definition 2 (Monotone)

We say that (xn) is monotone if it is increasing or decreasing, and strictly monotone if it is strictly increasing or strictly decreasing.

Now that we are equipped with these new definitions, we can write several theorems. First, we will show a result for sequences which are
bounded and monotone.

Theorem 3 (Monotone Convergence Theorem)

If (xn) is increasing and bounded above or decreasing and bounded below, then xn → a for finite a ∈ R.

Proof. We shall prove for the case when (xn) ∈ RN is increasing and bounded above. The other case, where (xn) is decreasing and
bounded below, follows similarly. Assume (xn) is increasing and bounded above. Then for all n ∈ N, xn ≤ xn+1 and there exists
some M ∈ R such that xn ≤ M for all n. Consider E = {xn : n ∈ N}. We observe that E is nonempty, is bounded above by M ,
and so by Completeness Axiom, sup E exists. Let’s call this supremum s := sup E. We want to show that for any ε > 0 there exists
some N ∈ N such that |xn − s| < ε for all n ≥ N . By the Approximation Property for Suprema, we derive that for all m ≥ n,
s − ε < xm ≤ s. Hence |xm − s| < ε for all m ≥ n. Thus, xn → a as n → ∞ for a ∈ R. □

We shall introduce nested intervals.

Definition 3 (Nested Intervals)

We say a sequence of intervals is nested if each interval is a subset of the previous interval. Specifically, (In) is nested if I1 ⊆ I2 ⊆ ...

A useful theorem on nested intervals follows.
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Theorem 4 (Nested Interval Property)

If (In) is a sequence of nested intervals then,

E :=
∞⋂

n=1

In

is nonempty. Further, if |In| → 0 as n → ∞ then E = {a} for some a ∈ R.

We shall finally consider the Bolzano-Weierstrass Theorem, which is the ultimate theorem of this section. You may see this pattern throughout
mathematics – results which can be stated simply are often difficult to prove. They’re also often extremely interesting.

Theorem 5 (Bolzano-Weierstrass Theorem)

Every bounded sequence in R has a convergent subsequence.

Proof. Let (xn) be a bounded sequence in R. Since it is bounded, there exist M, m ∈ R such that m ≤ xn ≤ M for all n. Let
I1 = [m, M ]. Divide I1 into two equal closed intervals, where the left half is [m, m+M

2 ] and the right half is [ m+M
2 , M ]. At least

one of these halves must contain infinitely-many terms of (xn) (by the Pigeonhole Principle). Denote this half I2. Choose n1 to be
the smallest index such that xn1 ∈ I1. This will be the first term of our subsequence. Repeat the bisection process on I2. Again,
one half must contain infinitely-many terms. Call this half I3. Choose n2 > n1 such that xn2 ∈ I2. We shall continue this process
inductively. At step k we have interval Ik containing infinitely-many terms. Bisect Ik and choose the half with infinitely many terms
as Ik+1. Select nk > nk+1 such that nnk ∈ Ik. Observe that |Ik| = M−m

2k−1 . Note that the intervals are nested, such that Ik+1 ⊆ Ik

for all k ∈ N. Note that |Ik| → 0 as k → ∞. Thus, by the Nested Interval Property,
⋂∞

k=1 Ik = {a} for some a ∈ R. It follows that
xnk → a as k → ∞. □
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