
3. Infima and Suprema
In this topic, we will discuss various concepts related to infima and suprema, which build on the idea of minima and maxima from calculus.

Definition 1 (Bound and Boundedness)

We say that some subset E ⊂ R is bounded if, for all e ∈ E, |e| < M for some M ∈ R. We call M the bound.

Through the following example, we observe that a bounded sequence has multiple bounds.

Example 1

The set {1, 2, 3} is bounded. One possible upper bound is 3. Another possible upper bound is 4. You may notice, there are infinitely
many bounds for a bounded set.

We shall now formalize the notion of the “best” bound.

Definition 2 (Infimum and Supremum)

The infimum of some set E is the greatest lower bound. That is, it is the greatest M ∈ R such that for all e ∈ E, e ≥ M .
The supremum of some set E is the least upper bound. That is, it is the least M ∈ R such that for all e ∈ E, e ≤ M .

You should observe that it is possible for the infimum/supremum of a set to be in the set, but it is also possible for it to be outside the set.

Example 2

Consider set E := {x−2 : x ∈ R>0} ⊂ R. Here, the supremum of E is undefined, since as x tends towards 0, the values in the set
tend toward +∞. Also, inf E = 0 as 0 is the greatest lower bound.

We shall take the following property axiomatically – that is, we will assume it without proof.

Theorem 1 (Completeness Axiom)

If E is a nonempty subset of R that is bounded above then E has a finite supremum.

At this time, we shall explore several key results involving boundedness and infima/suprema.
We shall now explore a fundamental, ancient result – the Archimedean Principle. Although the groundwork for the principle was indeed laid
by the ancient Greek Archimedes, he did not formalize the principle. Instead, this was done by Eudoxus, a subsequent Greek mathematician.

Theorem 1 (Archimedean Principle)

For all a, b ∈ R>0, there exists an n ∈ N such that b < na.

Proof. Let a, b ∈ R. Consider the set E := {na : n ∈ N}, i.e., the set of all natural number multiples of a. Observe that E is not
bounded above. Suppose, for sake of contradiction, that there exists no n ∈ N such that b < na. Then b would be an upper bound
for E, which contradicts the fact that E is not bounded above. Thus, there must exist some n ∈ N to satisfy the inequality. □

Observe that if b < a already, then n = 1 satisfies this inequality. However, if b > a then we must find some n > 1 to satisfy the inequality;
the Archimedean principle dictates that we can always find such a natural number.

Theorem 2 (Approximation Property for Suprema)

Let E be some set with finite supremum. Let ε > 0. Then there exists some e ∈ E such that sup E − ε < e ≤ sup E.

1



Theorem 3 (Monotone Property)

Let A and B be nonempty subsets of R such that A ⊂ B. If B has a finite supremum then sup A ≤ sup B.

Proof. Suppose B has a finite supremum, specifically let sB := sup B. Then by the Approximation Property for Suprema, for every
ε > 0 there exists some b ∈ B such that s − ε < b ≤ s. Observe that sB is also an upper bound for A. Since A is nonempty and
bounded above, by Completeness Axiom it has a finite supremum, sA := sup A. Suppose for sake of contradiction that sA > sB . By
the Approximation Property for Suprema, for any ε > 0 there exists some a ∈ A such that sa − ε < a ≤ sA. Choose ε = sA−sB

2 > 0.
Then we get the inequality sA − sA−sB

2 < a ≤ sA. Simplification yields sA+sB
2 < a ≤ sA. Since a ∈ A and A ⊂ B we know a ∈ B

but then a > sA+sB
2 > sB . This contradicts the fact that sB is an upper bound for B. □

So far, our theorems have been specific to suprema. The following result allows results on suprema to be applied to infima.

Theorem 4 (Reflection Principle)

For E ⊂ R where E is nonempty, E has a supremum iff −E has an infimum. Specifically, − sup E = inf −E.

Proof. Assume s := sup E exists. For any y ∈ −E, y = −x for some x ∈ E. Since x ≤ s, we have −x ≥ −s. Thus −s is a
lower bound for −E. Let m be any lower bound for −E. Then −m is an upper bound for E, so s ≤ −m or equivalently m ≤ −s.
Therefore −s = inf −E. □

We have one final useful definition:

Definition 3 (Extended Real Number)

The extended real numbers R∗ is defined as R ∪ {∞} where ∞−1 = 0, 0−1 = ∞ and ∞ · a = ∞ for all a ∈ R.
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