2. Metrics, Absolute Value and Topology of ${\mathbb R}$

Now, we shall define a few extra notational tools that we can use.

Definition 1 (Metric)

A metric (or distance) is a function $d: E \times E \to \mathbb{R}$ which satisfies the following properties:

- (a) d is nonnegative, that is, for all $u, v \in E$, $d(u, v) \ge 0$ and d(u, v) = 0 if and only if u = v.
- (b) d is commutative, that is, for all $u, v \in E$, d(u, v) = d(v, u).
- (c) d must satisfy the triangle inequality, that is, for all $u, v, w \in E$, $d(u, v) \leq d(u, v) + d(v, w)$.

In plain language, a distance must never be negative and can only be zero if both inputs are identical. The distance between u and v must be the same as the distance between v and u. Finally, it must always be less distance to go directly from u to v, rather than to add an intermediary w.

Definition 2 (Metric Space)

A metric space is a pair (E, d) where E is a set and d is a metric. We typically call the elements of a metric space points.

Example 1 (Examples of Metrics)

- The Euclidean distance on \mathbb{R}^2 , $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, is defined by $d: (u, v) \mapsto \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$.
- The Manhattan distance on \mathbb{R}^2 , $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, is defined by $d: (u, v) \mapsto |x_1 x_2| + |y_1 y_2|$.
- The Hamming distance on \mathbb{Z}_2^n , $d: \mathbb{Z}_2^n \times \mathbb{Z}_2^n \to \mathbb{R}$, is sends (u, v) to the number of $i \in \{1, ..., n\}$ where $u_i \neq v_i$. The Hamming distance is used in error detection/correction when transmitting digital signals.

Definition 3 (Absolute Value)

The absolute value of $a \in \mathbb{R}$ is,

$$|a| = \begin{cases} a & \text{ if } a \geq 0 \\ -a & \text{ if } a < 0 \end{cases}$$

Notice that $|\cdot|$ defines a norm.

Definition 4 (Metric Defined by $|\cdot|$)

Assume that $|\cdot|$ is a norm on some set E. Then we say that the metric defined by $|\cdot|$ on E is $d: E \times E \to \mathbb{R}$ such that $d: (u, v) \mapsto |u - v|$.

Note that the ℓ^2 norm in \mathbb{R}^n defines the Euclidean distance in \mathbb{R}^n from linear algebra. Similarly, the ℓ^1 norm in \mathbb{R}^n defines the Manhattan distance.

Observe that, for any $x, y \in \mathbb{R}$, the statement |x| < y is equivalent to -y < x < y. Be careful of the inequality here! However, this statement may prove beneficial in proofs.

Now we shall introduce notation of intervals and their higher dimensional analogue - the ball.

Definition 5 (Intervals)

- (a) A closed interval [a, b] is defined as $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}.$
- (b) An open interval (a, b) is defined as $(a, b) := \{x \in \mathbb{R} : a < x < b\}.$

Definition 6 (Ball)

A ball in some metric space (E, d) of radius R > 0 centered at x_0 is defined to be

 $B_R(x_0) := \{ x \in E : d(x, x_0) < R \}$

Observe that the ball over the metric space \mathbb{R} with the metric induced by $|\cdot|$ is an open interval.