1. Field and Order Axioms

Let's start by discussing the axioms for real numbers, which are the axioms for a field. We'll also discuss the axioms for the order >.

Definition 1 (Law of Composition)

A law of composition on some set E is a map $\star : E \times E \to E$. That is, if E is closed under \star then \star is a law of composition.

(Note: We often use E to represent a general set. This notation is relatively commonplace; it comes from the French language, where the French term for set is *ensemble*.)

Definition 2 (Field)

- A field $(K, +, \cdot)$ is a particular set K, equipped with two laws of composition (which we commonly denote as + and \cdot), which meets a series of properties, or axioms. The axioms are as follows:
 - (a) K must be closed under + and \cdot . That is, for any $k_1, k_2 \in K$, we need $k_1 + k_2 \in K$ and $k_1 \cdot k_2 \in K$.
 - (b) + and \cdot must be commutative in K. That is, for any $k_1, k_2 \in K$, we need $k_1 + k_2 = k_2 + k_1$ and $k_1 \cdot k_2 = k_2 \cdot k_1$.
 - (c) + and \cdot must be associative in K. That is, for any $k_1, k_2, k_3 \in K$, we need $k_1 + (k_2 + k_3) = (k_1 + k_2) + k_3$ and $k_1 \cdot (k_2 \cdot k_3) = (k_1 \cdot k_2) \cdot k_3$.
 - (d) K must have distributivity of \cdot over +. That is, for any $k_1, k_2, k_3 \in K$, we need $k_1 \cdot (k_2 + k_3) = k_1 \cdot k_2 + k_1 \cdot k_3$.
 - (e) + and \cdot must have identities in K. That is, we must have some elements $i_+, i_{\bullet} \in K$ such that for all $k \in K$, $k + i_+ = k$ and $k \cdot i_{\bullet} = k$. We commonly denote $0 := i_+$ and $1 := i_{\bullet}$.
 - (f) + and \cdot must have inverses in K. That is, for any $k \in K$ we must have some elements $\overline{k}, \overline{k} \in K$ such that $k + \overline{k} = 0$ and $k \cdot \overline{k} = 1$. We commonly denote $-k := \overline{k}$ and $k^{-1} := \overline{k}$.

(Note: We commonly use K to represent a general field. This notation is also relatively commonplace; this time, it comes from the German language, where the German term *Körper* is used.)

A few common fields include \mathbb{R} , the set of real numbers; \mathbb{C} , the set of complex numbers; and, \mathbb{Z}_p , the subset of the integers $\{1, ..., p\}$ for some prime p, all under the typical definitions of addition and multiplication.

Definition 3 (Ring)

If you have some set R paired with two laws of composition + and \cdot , where $(R, +, \cdot)$ would be a field iff inverses existed for \cdot and \cdot was commutative, then we call R a ring.

Here is a theorem to give you some exposure to proofs involving fields.

Theorem 1 (Multiplication by Additive Identity)

Let $(K, +, \cdot)$ be a field with additive identity 0. For any $k \in K$, we have $0 \cdot k = 0$.

Proof.Observe that we can write 0 = 0 + 0. Then $0 \cdot k = (0 + 0) \cdot k$. By commutativity, we get $k \cdot (0 + 0)$. Applying distributivity yields $0 \cdot k = k \cdot 0 + k \cdot 0$. Applying commutativity to the LHS yields $k \cdot 0 = k \cdot 0 + k \cdot 0$. We can add the additive inverse of $k \cdot 0$ to yield $0 = k \cdot 0$ as required.

Going forward, for convenience, we will often say "K is a field" with the two laws of composition implied. Now we shall define the order > in \mathbb{R} .

Definition 4 (The Order >)

We define the order > in \mathbb{R} as the operator satisfying the following:

- (a) > satisfies the trichotomy property. That is, for all $a, b \in \mathbb{R}$, either a > b or b > a or a = b.
- (b) > is transitive. That is, for all $a, b, c \in \mathbb{R}$, if a > b and b > c then a > c.
- (c) > is additive. That is, for all $a, b, c \in \mathbb{R}$, if a > b then a + c > b + c.
- (d) > is multiplicative. That is, for all $a, b, c \in \mathbb{R}$, given that a > b, if c > 0 then ac > bc, and if 0 > c then bc > ac.

We define a < b to be equivalent to b > a.

(Note: We don't necessarily have the same orders for other fields. For instance, in \mathbb{C} , is *i* greater than 1 or -i? In \mathbb{Z}_3 , is 2 greater than 1?)