
1. Field and Order Axioms
Let’s start by discussing the axioms for real numbers, which are the axioms for a field. We’ll also discuss the axioms for the order >.

Definition 1 (Law of Composition)

A law of composition on some set E is a map ⋆ : E × E → E. That is, if E is closed under ⋆ then ⋆ is a law of composition.

(Note: We often use E to represent a general set. This notation is relatively commonplace; it comes from the French language, where the
French term for set is ensemble.)

Definition 2 (Field)

A field (K, +, ·) is a particular set K, equipped with two laws of composition (which we commonly denote as + and ·), which meets
a series of properties, or axioms. The axioms are as follows:

(a) K must be closed under + and ·. That is, for any k1, k2 ∈ K, we need k1 + k2 ∈ K and k1 · k2 ∈ K.

(b) + and · must be commutative in K. That is, for any k1, k2 ∈ K, we need k1 + k2 = k2 + k1 and k1 · k2 = k2 · k1.

(c) + and · must be associative in K. That is, for any k1, k2, k3 ∈ K, we need k1 + (k2 + k3) = (k1 + k2) + k3 and k1 · (k2 · k3) =
(k1 · k2) · k3.

(d) K must have distributivity of · over +. That is, for any k1, k2, k3 ∈ K, we need k1 · (k2 + k3) = k1 · k2 + k1 · k3.

(e) + and · must have identities in K. That is, we must have some elements i+, i• ∈ K such that for all k ∈ K, k + i+ = k and
k · i• = k. We commonly denote 0 := i+ and 1 := i•.

(f) + and · must have inverses in K. That is, for any k ∈ K we must have some elements k, k̃ ∈ K such that k + k = 0 and
k · k̃ = 1. We commonly denote −k := k and k−1 := k̃.

(Note: We commonly use K to represent a general field. This notation is also relatively commonplace; this time, it comes from the German
language, where the German term Körper is used.)
A few common fields include R, the set of real numbers; C, the set of complex numbers; and, Zp, the subset of the integers {1, ..., p} for
some prime p, all under the typical definitions of addition and multiplication.

Definition 3 (Ring)

If you have some set R paired with two laws of composition + and ·, where (R, +, ·) would be a field iff inverses existed for · and ·
was commutative, then we call R a ring.

Here is a theorem to give you some exposure to proofs involving fields.

Theorem 1 (Multiplication by Additive Identity)

Let (K, +, ·) be a field with additive identity 0. For any k ∈ K, we have 0 · k = 0.

Proof.Observe that we can write 0 = 0 + 0. Then 0 · k = (0 + 0) · k. By commutativity, we get k · (0 + 0). Applying distributivity
yields 0 · k = k · 0 + k · 0. Applying commutativity to the LHS yields k · 0 = k · 0 + k · 0. We can add the additive inverse of k · 0 to
yield 0 = k · 0 as required. □

Going forward, for convenience, we will often say “K is a field” with the two laws of composition implied.
Now we shall define the order > in R.

Definition 4 (The Order >)

We define the order > in R as the operator satisfying the following:

(a) > satisfies the trichotomy property. That is, for all a, b ∈ R, either a > b or b > a or a = b.

(b) > is transitive. That is, for all a, b, c ∈ R, if a > b and b > c then a > c.

(c) > is additive. That is, for all a, b, c ∈ R, if a > b then a + c > b + c.

(d) > is multiplicative. That is, for all a, b, c ∈ R, given that a > b, if c > 0 then ac > bc, and if 0 > c then bc > ac.

We define a < b to be equivalent to b > a.
(Note: We don’t necessarily have the same orders for other fields. For instance, in C, is i greater than 1 or −i? In Z3, is 2 greater than 1?)
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