1. Field and Order Axioms

Let's start by discussing the axioms for real numbers, which are the axioms for a field. We'll also discuss the axioms for the order *>*.

Definition 1 (Law of Composition)

A law of composition on some set *E* is a map $\star : E \times E \to E$. That is, if *E* is closed under \star then \star is a law of composition.

(Note: We often use *E* to represent a general set. This notation is relatively commonplace; it comes from the French language, where the French term for set is ensemble.)

Definition 2 (Field)

- A field $(K, +, \cdot)$ is a particular set K, equipped with two laws of composition (which we commonly denote as $+$ and \cdot), which meets a series of properties, or axioms. The axioms are as follows:
	- (a) *K* must be closed under + and \cdot . That is, for any $k_1, k_2 \in K$, we need $k_1 + k_2 \in K$ and $k_1 \cdot k_2 \in K$.
	- (b) + and · must be commutative in *K*. That is, for any $k_1, k_2 \in K$, we need $k_1 + k_2 = k_2 + k_1$ and $k_1 \cdot k_2 = k_2 \cdot k_1$.
	- (c) + and · must be associative in K. That is, for any $k_1, k_2, k_3 \in K$, we need $k_1 + (k_2 + k_3) = (k_1 + k_2) + k_3$ and $k_1 \cdot (k_2 \cdot k_3) =$ $(k_1 \cdot k_2) \cdot k_3$.
	- (d) *K* must have distributivity of \cdot over $+$. That is, for any $k_1, k_2, k_3 \in K$, we need $k_1 \cdot (k_2 + k_3) = k_1 \cdot k_2 + k_1 \cdot k_3$.
	- (e) + and · must have identities in *K*. That is, we must have some elements *i*+*, i* ∈ *K* such that for all *k* ∈ *K*, *k* + *i*⁺ = *k* and $k \cdot i_{\bullet} = k$. We commonly denote $0 := i_{+}$ and $1 := i_{\bullet}$.
	- (f) + and · must have inverses in K. That is, for any $k \in K$ we must have some elements $\overline{k}, \overline{k} \in K$ such that $k + \overline{k} = 0$ and $k \cdot \tilde{k} = 1$. We commonly denote $-k := \overline{k}$ and $k^{-1} := \tilde{k}$.

(Note: We commonly use *K* to represent a general field. This notation is also relatively commonplace; this time, it comes from the German language, where the German term Körper is used.)

A few common fields include R, the set of real numbers; C, the set of complex numbers; and, \mathbb{Z}_p , the subset of the integers $\{1,...,p\}$ for some prime *p*, all under the typical definitions of addition and multiplication.

Definition 3 (Ring)

If you have some set R paired with two laws of composition $+$ and \cdot , where $(R, +, \cdot)$ would be a field iff inverses existed for \cdot and \cdot was commutative, then we call *R* a ring.

Here is a theorem to give you some exposure to proofs involving fields.

Theorem 1 (Multiplication by Additive Identity)

Let $(K, +, \cdot)$ be a field with additive identity 0. For any $k \in K$, we have $0 \cdot k = 0$.

Proof.Observe that we can write $0 = 0 + 0$. Then $0 \cdot k = (0 + 0) \cdot k$. By commutativity, we get $k \cdot (0 + 0)$. Applying distributivity yields $0 \cdot k = k \cdot 0 + k \cdot 0$. Applying commutativity to the LHS yields $k \cdot 0 = k \cdot 0 + k \cdot 0$. We can add the additive inverse of $k \cdot 0$ to yield $0 = k \cdot 0$ as required. \square

Going forward, for convenience, we will often say "*K* is a field" with the two laws of composition implied. Now we shall define the order *>* in R.

Definition 4 (The Order *>*)

We define the order $>$ in $\mathbb R$ as the operator satisfying the following:

- (a) $>$ satisfies the trichotomy property. That is, for all $a, b \in \mathbb{R}$, either $a > b$ or $b > a$ or $a = b$.
- (b) > is transitive. That is, for all $a, b, c \in \mathbb{R}$, if $a > b$ and $b > c$ then $a > c$.
- (c) > is additive. That is, for all $a, b, c \in \mathbb{R}$, if $a > b$ then $a + c > b + c$.
- (d) > is multiplicative. That is, for all $a, b, c \in \mathbb{R}$, given that $a > b$, if $c > 0$ then $ac > bc$, and if $0 > c$ then $bc > ac$.

We define $a < b$ to be equivalent to $b > a$.

(Note: We don't necessarily have the same orders for other fields. For instance, in C, is *i* greater than 1 or −*i*? In Z3, is 2 greater than 1?)