Tutorial 2 MATH3020: Real Analysis 2 - Metrics, Absolute Value and Topology of ℝ

Benjamin Fedoruk

Ontario Tech University

September 17, 2024

3

イロト 不得 トイヨト イヨト

(Wade 1.2.3). The *positive part* of $a \in \mathbb{R}$ is defined by,

$$a^+ := rac{|a|+a}{2}$$

and the *negative part* by

$$a^- := \frac{|a| - a}{2}$$

Prove that $a = a^+ - a^-$ and $|a| = a^+ + a^-$.

イロト イポト イヨト イヨト 二日

Question 2 - Proof Using Inequalities

True or false: $-3 \le x \le 2$ implies $|x^2 + x - 6| \le 6|x - 2|$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Question 3 - Algebraic and Geometric Means

The arithmetic mean of $a, b \in \mathbb{R}$ is $A(a, b) = \frac{a+b}{2}$ and the geometric mean of $a, b \in [0, \infty)$ is $G(a, b) = \sqrt{ab}$. If $0 \le a \le b$, prove that $a \le G(a, b) \le A(a, b) \le b$. Prove that G(a, b) = A(a, b) if and only if a = b.

Question 4 - Products of Sums of Squares

Prove that $(ab+cd)^2 \leq (a^2+c^2)(b^2+d^2)$ for all $a,b,c,d\in\mathbb{R}.$

イロト イ団ト イヨト イヨト 二日