Practice Problems MATH2055: Advanced Linear Algebra Tutorial 5 Fun with Isomorphisms

Benjamin Fedoruk

Ontario Tech University

April 4, 2024

イロト 不得 トイヨト イヨト

3

(Anton 8.3.9 and 8.3.10)

- Show that $\mathbb{P}_2 \simeq \mathbb{R}^3$ by finding an isomorphism.
- Let S_3 be the vector space of all 3×3 symmetric matrices. Show that $S_3 \simeq \mathbb{R}^6$ by finding an isomorphism.
- Consider the vector space V := span{1, sin t, cos t}.
 Show that V ≃ ℝ³ by finding an isomorphism.

Question 2 - Isomorphism is Transitive

(Anton 8.3.23) Prove that if U V, and W are vector spaces such that $U \simeq V$ and $V \simeq W$ then $U \simeq W$.

(日)

Question 3 - Inner Product Space Isomorphisms

(Anton 8.3.20) We know that $\mathbb{M}_{2\times 2}$ (the 2 × 2 matrices with real number entries) is an inner product space where $\langle A, B \rangle = \operatorname{tr} (B^{\top}A)$. Also, we know \mathbb{P}_3 is an inner product space where

$$\langle a_0 + a_1 x + a_2 x^2 + a_3 x^3, b_0 + b_1 x + b_2 x^2 + b_3 x^3 \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3.$$

We say two inner product spaces are isomorphic if there exists some vector space isomorphism T such that $\langle T(u), T(v) \rangle = \langle u, v \rangle$. Show that $T : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow a + bx + cx^2 + dx^3$ is an inner product

space isomorphism from $\mathbb{M}_{2\times 2}$ to \mathbb{P}_3 .