Practice Problems

MATH2055: Advanced Linear Algebra Tutorial 2

Basis and Dimension

Benjamin Fedoruk

Ontario Tech University

April 4, 2024

Question 1 - Basis of Antisymmetric Matrices

(Treil 1.2.4c)

Recall that an antisymmetric matrix is any matrix A which satisfies $A^{\top} = -A$. Find a basis for:

- The set of 2×2 antisymmetric matrices.
- The set of 3×3 antisymmetric matrices.
- The set of $n \times n$ antisymmetric matrices (for $n \in \mathbb{N}$).

Question 2 - On Linear Independence

(Treil 1.2.6) Is it possible that vectors v_1 , v_2 , v_3 are linearly dependent, but the vectors $w_1 = v_1 + v_2$, $w_2 = v_2 + v_3$, $w_3 = v_3 + v_1$ are linearly independent?

Question 3 - Equal Dimensions

(Axler 2.C.1)

Prove or give a counterexample: If V is a finite-dimensional vector space, and U is a subspace of V such that $\dim(U) = \dim(V)$, then U = V.

Question 4 - Vector Spaces with One Basis

(Axler 2.B.1) Find all vector spaces that have exactly one basis. (Hint: There are 2!)